Publications

Publications


2024  2023  2022

Preprints

  • L. Manduchi, K. Pandey, R. Bamler, R. Cotterell, S. Däubener, S. Fellenz, A. Fischer, T. Gärtner, M. Kirchler, M. Kloft, Y. Li, C. Lippert, G. de Melo, E. Nalisnick, B. Ommer, R. Ranganath, M. Rudolph, K. Ullrich, G. van den Broeck, J. Vogt, Y. Wang, F. Wenzel, F. Wood, S. Mandt, V. Fortuin.
    On the Challenges and Opportunities in Generative AI.
    arXiv:2403.00025, 2024.
    https://arxiv.org/abs/2403.00025
  • Jochen Schmid, Philipp Seufert, Michael Bortz.
    Adaptive discretization algorithms for locally optimal experimental design.
    arXiv:2406.01541, 2024.
    https://arxiv.org/abs/2406.01541

2024

  • L. Vollmer, S. Fellenz, F. Jirasek, H. Leitte, and H. Hasse.
    Journal of Chemical Information and Modeling, 2024.
    KnowTD─An Actionable Knowledge Representation System for Thermodynamics
  • C. James, M. Nagda, N. Ghassemi, M. Kloft, and S. Fellenz.
    Evaluating Dynamic Topic Models.
    Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL), 2024.
    https://aclanthology.org/2024.acl-long.11.pdf
  • W. Li, R. Devidze, W. Mustafa, and S. Fellenz.
    Proceedings of International Conference on Artificial Intelligence and Statistics (AISTATS), PMLR 238:1954-1962, 2024.
    Ethics in Action: Training Reinforcement Learning Agent for Moral Decision-making In Text-based Adventure Games
  • W. Mustafa, P. Liznerski, A. Ledent, D. Wagner, P. Wang, and M. Kloft.
    Proceedings of International Conference on Artificial Intelligence and Statistics (AISTATS), PMLR 238:4528-4536, 2024.
    Numerically Tight Generalization Bounds for Adversarial Risk in Stochastic Neural Networks
  • M. Nagda and S. Fellenz.
    Putting Back the Stops: Integrating Syntax with Neural Topic Models.
    Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), 2024.
    https://www.ijcai.org/proceedings/2024/0710.pdf
  • S. Varshneya, A. Ledent, P. Liznerski, A. Balinskyy, P. Mehta, W. Mustafa, and M. Kloft.
    Interpretable Tensor Fusion.
    Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), (to appear) 2024.
  • B. Franks, C. Morris, A. Velingker, and F. Geerts.
    Weisfeiler-Leman at the margin: When more expressivity matters.
    Proceedings of the International Conference on Machine Learning (ICML), (to appear) 2024.
  • R. Alves, A. Ledent, R. Assuncao, P. Vaz-de-Melo, and M. Kloft.
    Proceedings of The Web Conference (WWW), 2464-2475, 2024.
    Unraveling the Dynamics of Stable and Curious Audiences in Web Systems
  • R. Lopes, R. Alves, A. Ledent, R. Santos, and M. Kloft.
    Expert Systems with Applications, 236:121164, 2024.
    Recommendations with minimum exposure guarantees: A post-processing framework
  • L. Streib, J. Spaak, M. Kloft, and R. Schäfer.
    Environmental Sciences Europe, 36:118, 2024.
    The spatiotemporal profile and adaptation determine the joint effects and interactions of multiple stressors
  • A. Muraleedharan, F. Hartung, D. Wagner, M. Kloft, and J. Burger.
    Benchmarking Deep Anomaly Detection on Real Process Data of a Continuous Distillation Process.
    ESCAPE34-PSE24 Symposium, (to appear) 2024.
  • M. Hussong, S. Varshneya, P. Rüdiger-Flore, M. Glatt, M. Kloft, and J. C. Aurich.
    Procedia CIRP, 120:135-140, 2024.
    A process planning system using deep artificial neural networks for the prediction of operation sequences
  • M. Nagda, P. Ostheimer, T. Specht, F. Rhein, F. Jirasek, M. Kloft, and S. Fellenz.
    PITs: Physics-Informed Transformers for Predicting Chemical Phenomena.
    Proceedings of the ECML PKDD Workshop on Machine Learning for Chemistry and Chemical Engineering (ML4CCE), 2024. Full oral.
    https://ml4cce-ecml.com/papers/179.pdf
  • F. Hartung, B. Franks, D. Wagner, P. Liznerski, S. Reithermann, S. Fellenz, F. Jirasek, M. Rudolph, D. Neider, F. Rhein, H. Leitte, C. Song, B. Klöpper, S. Mandt, M. Bortz, J. Burger, H. Hasse, and M. Kloft.
    Deep Anomaly Detection on Tennessee Eastman Procss Data.
    Proceedings of the ECML PKDD Workshop on Machine Learning for Chemistry and Chemical Engineering (ML4CCE), 2024.
  • P. Ostheimer, M. Nagda, M. Kloft, and S. Fellenz.
    Text Style Transfer Evaluation Using Large Language Models.
    Proceedings of International Conference on Computational Linguistics (COLING), 15802-1582, 2024.
    https://aclanthology.org/2024.lrec-main.1373.pdf
  • M. Peter, N. Ghanooni, F. Hartung, B. Franks, D. Wagner, P. Liznerski, A. Muraleedharan, J. Arweiler, D. Reinhardt, I. Jungjohann, S. Reithermann, S. Fellenz, F. Jirasek, M. Rudolph, D. Neider, F. Rhein, H. Leitte, C. Song, S. Mandt, M. Bortz, J. Burger, H. Hasse, and M. Kloft.
    Anomaly Classification of Tennessee-Eastman Process Data.
    Proceedings of the ECML PKDD Workshop on Machine Learning for Chemistry and Chemical Engineering (ML4CCE), 2024.
  • D. Reinhardt, D. Wagner, A. Muraleedharan, J. Arweiler, I. Jungjohann, F. Jirasek, J. Burger, H. Hasse, M. Kloft, and H. Leitte.
    cPAX: Comparative Visualization Of Known And Novel Anomalies For Monitoring Chemical Plants.
    Proceedings of the ECML PKDD Workshop on Machine Learning for Chemistry and Chemical Engineering (ML4CCE), 2024.
    https://ml4cce-ecml.com/papers/178.pdf
  • J. Arweiler, A. Muraleedharan, F. Hartung, I. Jungjohann, D. Wagner, M. Kloft, J. Burger, H. Hasse, and F. Jirasek.
    Anomaly Detection on Experimental Chemical Process Data.
    Proceedings of the ECML PKDD Workshop on Machine Learning for Chemistry and Chemical Engineering (ML4CCE), 2024.
  • J. Will, J. Arweiler, I. Jungjohann, J. Werner, M. Nagda, M. Bortz, J. Schmid, M. Kloft, S. Fellenz, and S. Mandt.
    Enhancing Realism in Batch Distillation Simulations: Data-Efficient Time Series Style Transfer with Transformers.
    Proceedings of the ECML PKDD Workshop on Machine Learning for Chemistry and Chemical Engineering (ML4CCE), 2024.
    https://ml4cce-ecml.com/papers/199.pdf
  • S. Lutz, J. Arweiler, A. Muraleedharan, N. Kahlhoff, J. Burger, M. Bortz, F. Hartung, H. Hasse, S. Fellenz, F. Jirasek, I. Jungjohann, M. Kloft, H. Leitte, S. Mandt, M. Nagda, D. Reinhardt, J. Schmid, D. Wagner, J. Werner, and D. Neider.
    A Benchmark Suit for Neural Network Verification.
    Proceedings of the ECML PKDD Workshop on Machine Learning for Chemistry and Chemical Engineering (ML4CCE), 2024.
  • W. Mustafa, P. Liznerski, A. Ledent, D. Wagner, P. Wang, and M. Kloft.
    Non-vacuous PAC-Bayes bounds for Models under Adversarial Corruptions.
    GAMM 2024. SPP 2298: Theoretical Foundations of Deep Learning, 2024.
  • Philipp Liznerski, Saurabh Varshneya, Ece Calikus, Sophie Fellenz, Marius Kloft.
    Reimagining Anomalies: What If Anomalies Were Normal?
    arXiv:2402.14469, 2024.
    https://arxiv.org/abs/2402.14469
  • Aodong Li, Chen Qiu, Marius Kloft, Padhraic Smyth, Maja Rudolph, Stephan Mandt.
    Zero-Shot Anomaly Detection via Batch Normalization.
    arXiv:2302.07849v4, 2024.
    https://arxiv.org/abs/2302.07849

2023


2022